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Abstract
A crystal phase in equilibrium under changing pressure traces out a line in structure space
where each point corresponds to a structure. Along that equilibrium line the structure and all
static properties describe the static behavior of the phase, including two sets of elastic constants
and the bulk modulus. We discuss and illustrate the calculation of the equilibrium line and the
properties from both the Gibbs free energy and the internal energy. We show that the bulk
modulus, which gives a stress to strain ratio along the equilibrium line, has a universal relation
independent of pressure to that set of elastic constants which control the stability, but not to the
set of elastic constants appearing in the stress–strain relations at constant pressure.

1. Introduction

Equilibrium is a basic concept for discussion of phases and
their linear elastic properties under hydrostatic pressure p. In a
phase in a state of equilibrium, which will be defined precisely
later, there are no forces present that move the crystal phase
away from that state. The linear elasticity theory of the phase
concerns the linear relation between small stresses and strains
in the neighborhood of the equilibrium state.

When p changes the crystal state moves along a one-
dimensional continuum of states in structure space, where a
point corresponds to one structure. For crystals with one
atom per cell, which we consider here, structure space has six
dimensions, which can be the sides a, b, c and angles between
sides α, β , γ of the unit cell. We shall call the one-dimensional
continuum the equilibrium line and calculate the properties of
the states on the line. The properties include p, the six structure
parameters, volume V , internal energy E , Gibbs free energy
G ≡ E+ pV (for a non-vibrating crystal), elastic constants ci j ,
i, j = 1–6 and bulk modulus B . Each phase has an equilibrium
line threading through the six-dimensional structure space; the
properties along the line listed above then describe the static
behavior as a function of pressure of the corresponding phase,
which can be thought of as a quantum state of the infinite
periodic crystal.

Of particular interest are the ci j (defined later) which
determine if the phase is stable or unstable, and B which relates
stress changes (changes in p) to strain changes (changes in
volume V ) along the equilibrium line. Other elastic constants

called cV
i j and c p

i j enter stress–strain relations for arbitrary
structures around the equilibrium state [1].

The purpose of this paper is to define the equilibrium line
and show how to calculate it and the crystal properties along it,
including the elastic constants and B . We show that B has
a universal relation to the ci j , the same at every p and not
explicitly dependent on p, and derive that universal relation.

Section 2 defines equilibrium, shows how to find the
direction of the equilibrium line, and illustrates the lines for
body-centered-tetragonal (bct), body-centered-cubic (bcc) and
face-centered-cubic (fcc) Al. The universal relation between
the bulk modulus and one set of elastic constants is derived.

Section 3 comments on difficulties in calculating
equilibrium lines.

2. Equilibrium, equilibrium lines and the
bulk modulus

A state, by which we mean a solution of the electronic
equations for fixed nuclear positions, is in equilibrium under
pressure p if the internal stresses are isotropic with magnitude
−p; then the internal stresses balance the applied pressure and
the state is stationary. In an equilibrium state at pressure p0,
volume V0 the quantitative measure of stress is

1

V0

(
∂ E

∂εi

)
ε j =0

= −p0(δi1 + δi2 + δi3),

i, j = 1–6, j �= i. (1)
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Hence at constant pressure p0

1

V0

(
∂G

∂εi

)
ε j =0

= 1

V0

(
∂ E

∂εi

)
ε j =0

+ P0

V0

(
∂V

∂εi

)
ε j =0

= 1

V0

(
∂ E

∂εi

)
ε j =0

+ p0(δi1 + δi2 + δi3) = 0,

i, j = 1–6, j �= i, (2)

and the first derivatives of G with respect to strain all vanish,
which is a simple definition of equilibrium and agrees with a
basic thermodynamic theorem. The expansion of V in strains
used in (2) to evaluate ∂V/∂εi is given in [2].

Equilibrium states can be either stable, in which case G
is a minimum with respect to the εi , or unstable, in which
case strains exist which decrease G. The equilibrium states
on one line belong to a particular phase, which can then be
appropriately called stable or unstable at each p.

The neighboring equilibrium states to the equilibrium state
p0, V0 lie on the equilibrium line along which we can write

(
dE

dV

)
V0,p0

= −p0;
(

d2 E

dV 2

)
V0,p0

= −
(

dp

dV

)
V0,p0

= B0

V0
,

(3)

where the total derivatives are at the equilibrium point and
B0 is the bulk modulus there. Hence for small changes from
the equilibrium at p0, V0 along the equilibrium line we have
from (3)

δE ≡ E − E0 = −p0δV + B0

2V0
(δV )2, (4)

δG ≡ G − G0 = δE + p0δV = B0

2V0
(δV )2. (5)

To find a strain which changes the crystal along the
direction of the equilibrium line we have to find a strain for
which δG satisfies (5). Introduce the expansion of δG in strains
εi , i = 1–6 [2], which starts with second-order terms εiε j since
∂G/∂εi = 0, i = 1–6 from (2). Hence at constant p

δG

V0
= 1

2

6∑
i, j=1

ci jεiε j , (6)

which defines the ci j as coefficients in the Taylor expansion of
δG.

We now assume stresses exist in the crystal which
correspond to a pressure change δp added to p

δσi = −δp(δi1 + δi2 + δi3), i = 1–6, (7)

and calculate a special strain ε
eq
i which produces δσi from

−δp(δi1 + δi2 + δi3) =
6∑

j=1

ci jε
eq
j , 1 = 1–6. (8)

Substitution of (8) in (6) gives, using (3) and δV =
V0(ε1 + ε2 + ε3),

δG

V0
= −δp

2

6∑
j=1

(δi1 + δi2 + δi3)ε
eq
i = −δpδV

2V0

= −
(

δp

δV

)
δV 2

2V0
= B0

2

(
δV

V0

)2

. (9)

Thus (9) shows that δG from ε
eq
i is in agreement with the

behavior of G along the equilibrium line in (5), hence ε
eq
i ,

i = 1–6 gives a strain which moves the crystal along the
equilibrium line.

We introduce the 6 × 6 compliance matrix {si j}, i, j = 1
to 6 reciprocal to {ci j}

{si j} = {ci j}−1. (10)

Consider (8) as a matrix times a vector equation and multiply
by matrix {si j}. The sum of the first three rows of the product
gives

3∑
i, j=1

si j(−δp) = ε
eq
1 + ε

eq
2 + ε

eq
3 = δV

V0
, (11)

or from (3) and (11)

B0 = −V0
δp

δV
=

(
3∑

i, j=1

si j

)−1

. (12)

The formula (12) gives a universal relation between B and the
si j , i, j = 1–3 which can also be expressed as rational fractions
in terms of the ci j , i, j = 1–6 (see Nye [3, p 147]). The
relation (12) is the same as the one derived by Nye [3, p 146]
at p = 0, but here generalized to crystals under pressure.

Figure 1(a) shows the sweeps of total internal energy E at
constant V (called EV (c/a) curves). The minima of EV (c/a)

curves give the equilibrium states of the bct bcc and fcc phases
of Al. The total-energy calculations were made with the well-
tested WIEN2k band structure program [4] using a two-atom
bct cell; the parameters such as RMT, k-points in the Brillouin
zone, etc used in the calculations can be found in [5].

The equilibrium lines for the bct bcc and fcc phases of Al
obtained from figure 1(a) are plotted in the two-dimensional
structure space of the bct structure, coordinates c/a and V ,
as shown in figure 1(b). The states marked by open circles
and open triangles are stable, the states marked by symbol ×
are unstable. The stability of each of the equilibrium states is
determined by a calculation of the eigenvalues of the 6 × 6 ci j ,
i, j = 1–6 matrix. A minimum path (MNP) program which
converges on minima of G finds the ci j from trial sets of
strains in (6) and calculates the eigenvalues [1]. A negative
eigenvalue means the expansion in (6) is not positive definite,
hence indicates instability [1, 6, 7].

The pressure values shown in figure 1(b) are obtained
from figure 2, which shows the equation of state p(V ) for the
bct bcc phase and the fcc phase of Al. The p values come from
dE/dV in (3). The Gibbs free energy G = E + pV can then be
calculated at each equilibrium volume. This procedure is the
same as we used in our calculations of the equilibrium states of
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(a)

(b)

Figure 1. (a) Total internal energy as a function of c/a (called
EV (c/a) curves) of Al at selected volumes; the reference energy E0

is the total energy of fcc Al at V = 110 au3/atom. For clarity the
EV (c/a) curves at volumes from 95 to 40 au3/atom are shifted
toward E0 by 6.60, 59.5, 237, 323, 448 and 620 mRyd/atom,
respectively. The vertical dashed lines indicate the fcc phase at
c/a = 1.414 and the bcc phase at c/a = 1. The curved dashed line
denotes the bct phase which merges into bcc phase at
V = 65 au3/atom. The solid lines interpolate between the calculated
points. (b) Equilibrium lines for the bct bcc and fcc phases of Al
obtained from (a). The open circles and open triangles represent
stable states, the crosses represent unstable states. The pressure
values shown in (b) are obtained from figure 2.

vanadium [6] and Zn [7]. The bct bcc phase is shown unstable
until it becomes bcc and at p > 1.3 Mbar.

Figure 3 shows G(p) along the bct bcc and fcc
equilibrium lines. The inset shows the energy difference curve
Gbct bcc(p)–Gfcc(p) indicating the phase transition from bcc to
fcc at 2.7 Mbar.

3. Discussion

The concept of an equilibrium line in structure space is implicit
in the equation of state p(V ), which is a function defined
along the equilibrium line. We note that the equilibrium
line and p(V ) are not easy to find in lower symmetry
structures. For cubic structures with just one lattice parameter,

Figure 2. p(V ) curves for bct bcc phase (open triangles) and fcc
phase (open circles) of Al. The crossing of the p(V ) curve and the
dashed line ( p = 0) gives the equilibrium volume:
V fcc

0 = 111.2 au3/atom, V bct
0 = 114.8 au3/atom.

Figure 3. Gibbs free energies of the bct bcc phase and the
fcc phase of Al as a function of pressure, where
G0 = −485.638 965 mRyd/atom. The inset shows the free energy
difference curve Gbct bcc(p)–G fcc(p) of Al indicating the phase
transition from bcc to fcc phase at 2.7 Mbar. The solid line
interpolates between the calculated points.

the line and E(V ) and p(V ) are immediate. For lower
symmetries additional minimizations of E with respect to
lattice parameters are needed. We have chosen to show the
equilibrium line for bct structure with two lattice parameters,
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and to use sweeps of E at constant V to locate equilibrium
states at V from minima of E , which give the equilibrium states
immediately. This procedure is less work than finding minima
of G at constant p, which would require a search for minima
with respect to two lattice parameters.

We have shown that the stress–strain relation at constant
pressure uses different coefficients than the ci j , which we
have called c p

i j [1]. Hence use of c p
i j to find the strain along

the equilibrium line from additional stress δp would give the
wrong strain (the ci j must be used, as in (8)). However
Sin’ko [8] assumed the stress–strain relation at constant
pressure had as coefficients ci j rather than c p

i j , hence found the
correct relation of B to the ci j . Sin’ko limited the formulae
he derived for B as a function of the ci j to certain Bravais
symmetry cases, whereas (12) applies to all symmetry cases.
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